Reputation API

Reputation API

Leqal
Overview: How Connection and Reputation APIs work Together

Scopes and Permissions
API| Basic Structure
GET /api/reputation/{appUserid}
Request Spec
Parameters
Scope
Response
Connection Status Object

Reason Objects
Example Reason Obiject

Example Consistency Objects
Location Activities

distinctSightings
privateDataGranted

Matching
Name Matching

Handling familyName
Handling givenName

Example Curl Request for /api/reputation
POST /api/connection/{appUserid}
Request Spec
AppData
LocationObject
Specifying Names
Paternal/Maternal Matching
Maiden Names

Hyphenated Names
Aliases

Nicknames
The Use of Aliases and Nicknames
Examples of Name Matching and Results
Response
Example Curl Request for POST /api/connection

© 2016-2024 ToT Inc. All rights reserved.

GET /api/connection/{appUserid}
Request Spec
Response

Example Curl Request for GET /api/connection
References

Reasons Descriptions

Internal Reference:

Legal
This document is confidential and may not be copied, shared or redistributed without the

explicit permission of Token of Trust, LLC.

STATUS: The Reputation API is largely obsoleted except for some very narrow use cases.
Most customers will want to use the Verify Person APl mentioned below since it is easier
to use, returns an access token and creates a connection for you.

Token of Trust’s public APl documents are available publicly here:

e Verify Person API
e Reputation API

. This documentation should be updated to refer to the Verify Person API.

© 2016-2024 ToT Inc. All rights reserved.

https://tot-public-documentation.s3.amazonaws.com/Verify+Person+API.pdf
https://tot-public-documentation.s3.amazonaws.com/Reputation+API.pdf
https://docs.google.com/document/d/1lfHS0JaE0LlUXA8ImhrUWZnGRc6LrtgC4QUrqMt-0_o/edit#heading=h.gjdgxs

Overview: How Connection and Reputation APIs work Together

User Community Connections

Community Site
Create Connection
to User

POST /api/connection/{id}

b: totApiKey

b: totSecretKey

b: appUserid

b: appMetadata -

accessToken —
community user
connection metadata
familyName,
givenName,
Reputation } location...
API

GET /apireputation/id) —

q: totApiKey L

q:

q: appUserid

reputation

When the /reputation endpoint is invoked it pulls the end-user’s baseline reputation report
and compares the metadata Token of Trust has assembled for the user with metadata from the
community to assemble a final Reputation Report. The community may change the metadata
stored for that user at any time by calling the /connection endpoint at any time.

Changes to the connection metadata affect the end-user’s widgets and reputation api
immediately. If an overall ‘noMatch’ response is the result of the compare between the
connection metadata and the user Token of Trust attributes the user’s Reputation Summary will
display ‘Not Verified’ and the Verified Indicator will be hidden.

Communities should set location, given name, family name, and date of birth to make best
efforts to ensure consistency between community data and the connected Token of Trust
account. At minimum if these values are displayed they should be set so that clear
inconsistencies between the community and Token of Trust are captured as soon as possible.

© 2016-2024 ToT Inc. All rights reserved.

https://tokenoftrust.com/developer/guide/embed/#profile-summary
https://tokenoftrust.com/developer/guide/embed/#profile-icon

Scopes and Permissions

Permissions define what an application is allowed to access. Permissions are determined based
upon your current application subscription level and will change ifiwhen you change your
subscription.

Scope defines what an API request should return and may be passed along with every request.
If you don’t have the permission to use a given scope will be removed or the API request
rejected. Here are the permissions - each of which also defines a scope:

Permission Description

seal Basic reasons and consistency related to the end user (sections below for
details).

seal-details ‘seal’ access plus dependsOn (sections below for details).

APl Basic Structure

All APIs return responses of this form:
{

"content" {
/** varies depending upon API Response **/

b

"metadata" {
"version":"1.0.0",
"status":200

GET /api/reputation/{appUserid}
Allows access to elements of the user’s reputation report. Specifically to the reasons
information.

Request Spec

'spec': {
method: 'GET',
path: '/api/reputation/:appUserid’,
description: 'Returns the reputation report for the specified user.',

© 2016-2024 ToT Inc. All rights reserved.

produces: ['application/json'],

parameters: [
param.path ('appUserid', 'community ID of user', 'string'),
param.query ('totApiKey', 'A valid API key.', 'string'),
param.query ('totSecretKey', 'A secret key..', 'string'),
param.query ('appDomain', 'The domain registered for this api key.',

'string'),

param.query ('scope', 'Controls the type and amount of data to
return - the app must have permissions to this scope as provided by end users
and/or payment plan. Optional - but we recommend including this field since
more/less data may be returned as the api is versioned and default scoping
changes.', 'string')],

}

Parameters

You've seen most of the parameters mentioned above... the one exception is ‘scope’:

Scope

Controls the type and amount of data to return. Not all applications can get to all user data. The
data returned in the ‘reputation’ object can vary based upon the permissions users have granted
the app and the level of API the application is subscribed to. If it is not specified more/less data
may be returned as the api is versioned and default scoping changes. Passing scope is optional
- but highly encouraged because it stabilizes the response from Token of Trust. To get the
fastest response - please ask for only the data you're likely to need.

See Scopes and Permissions for more details.

Response

Assuming the user is found - at minimum the following fields are included in the ‘content’ section
of the response:

connection: /* Connection Status Object (see below) */,
reasons: /* map of Reason Objects (see below) */,

consistency: /* map of Consistency Objects (see below) */,

privateDataGranted: /* map of data the consumer has granted
permission to share (see below) */
testMode: true,

Connection Status Object

The Connection Status object reports the state of the connection for this user.

connection : {
status : ‘active’ | ‘restricted’ | ‘noUser’,
appUserid : ‘YOUR APPUSERID’,

© 2016-2024 ToT Inc. All rights reserved.

reasonsForRestriction : [

{

"type": "rightToRestrict",

"initiator": "self",

"id": "KCb951",

"createdTimestamp": "2018-05-18T16:04:24.6082",

"updatedTimestamp": "2018-05-18T16:04:24.6082"

Here’s a brief description of what these attributes mean:

Attribute

Definition

status

The current state of the connection. *active’ means an active
user that is connected to your network. ‘restricted’ is a valid user
that has deactivated their account for one or more reasons (see
‘reasonsForRestriction’). ‘\noUser’ means that this
appUserid has not yet taken the first step to connect to Token of
Trust.

appUserid

same as the appUserid you passed in and that this record relates
to.

reasonsForRestricti

Only present if status the status is ‘restricted’. Gives a sense

on of why the restriction is in place via one or more reasons with the
attributes below.

initiator When ‘initiator’ is ‘self’ user has opted to restrict their profile but it
can be restricted by ‘totSupport’ or ‘totSystem’ as well -
generally for malicious activity or because the account is
‘rendingErasure’.

type The type of reason for the restriction. Valid values are
‘rightToRestrict’, ‘pendingErasure’,
‘reportOfAbuse’.

createdTimestamp Timestamps to indicate when the restriction was placed or updated.

updatedTimestamp

id A unique identifier for the reason.

© 2016-2024 ToT Inc. All rights reserved.

Reason Objects

The reasons attribute is an object that has a map of Reasons Objects (see the Example below).
There are some common structural elements to be aware of.

The first is that all reasons are key-value pairs that follow this form

someReason
value

“insufficientData”,

otherKeys

| false | “noMatch” | “partialMatch” | “fullMatch” |

otherAttributes

In short - every reason has a specific key (above) and a ‘value’ attribute that has the following

meaning:
value Definition

true same as partialMatch (see below).

false same as noMatch (see below).

noMatch this reason is not true or otherwise does not pass the minimum
criteria to satisfy this reason.

partialMatch this reason meets the minimum criteria but does not meet the
fullMatch criteria to satisfy this reason.

fullMatch this reason meets the full match criteria and is the best possible
match currently defined by Token of Trust.

insufficientData there was not enough data to rationalize about this reason. This is
result is indeterminate - neither true, nor false.

The difference and boundaries between no, full and partial matches depends upon the reason.
Other attributes may also accompany each reason - see the reason description for more details.

Example Reason Object

© 2016-2024 ToT Inc. All rights reserved.

Items with an (*) are returned for seal scope - other items are returned only for seal-details
scope. ‘dependsOn’ are only provided for seal-details API:

reasons: {
"*jsUserBaselineVerified": {
"value": false,
"dependsOn": [
"isOnlineVerified", “accountDataIsConsistent”
]
by
"*isRealWorldVerified": ({
"value": false
by
"accountDataIsConsistent": {
"value": "fullMatch",
"dependsOn": [
"locationIsConsistent",
"givenNameIsConsistent",
"familyNameIsConsistent"
]
by
"familyNameIsConsistent": {
"compared": 2,
"value": "fullMatch",
"fullMatches": 2
by
"locationIsConsistent™: {
"compared": 2,
"value": "fullMatch",
"fullMatches": 2
s
"locationLocalityRegionIsConsistent": {
"compared": 2,
"value": "fullMatch",
"fullMatches": 2
},
"givenNameIsConsistent": ({
"compared": 2,
"value": "fullMatch",
"fullMatches": 2
by
"*isOnlineVerified": {
"value": false,
"dependsOn": [
"facebook totVerifiedAccount",
"paypal totVerifiedAccount"

© 2016-2024 ToT Inc. All rights reserved.

}
"isOnlineVerified": {

"dependsOn": [
"accountDataIsConsistent",
"facebook totVerifiedAccount",
"paypal totVerifiedAccount"

1,

"value": "noMatch"

by
"facebook totVerifiedAccount": {

"value": "noMatch"

Example Consistency Objects

The intent here is to ensure that we can show that a user who opts-in has demonstrated some
level of consistency with the data that the community has on hand related to that user - without
compromising that user’s privacy. Consistency for each dimension is per the Matching section

below.

For some use cases it is important to note that the quality of the data could be wildly different. In
general government ID and other sources bound to the real world are considered more reliable.
The seal-details scope provides a breakdown of the number of compares and matches for

online vs real world verifications.

Only the ‘status’ attributes are returned for seal scope. ‘status’, ‘matches’, ‘partialMatches’ and
‘compares’ are returned for seal-details scope:

givenName : {
status: ‘fullMatch|partialMatch|noMatch’,
compares : {realWorld:1, online:2, primary: 1},

fullMatches: {online:1, primary: 1},
partialMatches: {realWorld:1, online:1l}

by

familyName : {
status: ‘fullMatch|partialMatch|noMatch’,
compares : {realWorld:1l, online:2, primary: 1},

fullMatches: {realWorld:1, online:1},
partialMatches: {online:1, primary: 1}
s

middleName : {
status: ‘fullMatch|partialMatch|noMatch’,

fullMatches: {realWorld:1},
partialMatches: {online:2, primary: 1}

© 2016-2024 ToT Inc. All rights reserved.

The number of fullMatches and partialMatches will be returned for each attribute - how
items are matched up depend upon the attribute in question. See Matching below).

Location Activities

Token of Trust will deliver consistency information related to to a user’s activities within the
user’s location consistency objects using the variables outlined below:

“activities” - Reports a summary of fact details related to location information that we've
ascertained from the user’s online activities. These activities include:
‘mostRecentlySeenTimestamp” - a timestamp of the most recent activity near the
primary location.
‘earliestSeenTimestamp” - a timestamp of the earliest activity near the primary
location.
‘distinctSightings” - the number of occurrences where a user was tagged within
an activity that contained location information (more detail below).
“fullMatches” - the number of occurrences where a user’s location activity reported
them within the smaller radial range of the primary location (recommending <= 5 miles).
“partialMatches”- the number of occurrences where a user’s location activity
reported them within the larger radial range of the primary location (recommending > 5
miles and < 15 miles).

distinctSightings

Distinct sightings are drawn from the most recent 10,000 photos where each sighting must
have:

e A tagged location with GPS coordinates
e At least one friend has interacted with it (comment or like)
e The photo’s data was not altered (back-dated, location-changes, etc)

From these fullMatches are those within the ‘maxFullMatch’ distances and
partialSightings are those within the maxPartialMatch distance. A fullMatch is
never double counted in partialMatches.

privateDataGranted

Private data the consumer provided Token of Trust is returned on the reputation api when the
consumer has granted permission to share that information. This can be information the
consumer provided directly or information collected from documents shared with Token of Trust.
This information is only shared if the consumer has granted permission.

© 2016-2024 ToT Inc. All rights reserved.

The data is returned in the following format:

"privateDataGranted": {
"govtId.givenName": "TOM",
"govtId.familyName": "JONES"

}y

The exact list of attributes will depend upon what was permitted and supplied by the user.
Consent is generally collected by way of the Verify Person API.

Matching

Matching is done across all attributes and verification points to ensure consistency of TOT and
community data.

Here is how we assess fullMatch, partialMatch and noMatch indications for each
attribute:

Attribute fullMatch partialMatch noMatch

Location All locations within 5 | All locations within 10 | At least one location
km radius. mile radius. beyond 20 km radius.

Given Name If a string - an exact At least one match No match on name.
match of the string. name, but not all

Otherwise all names names match.
in ToT found in

dictionary.
Middle Name If a string - an exact | At least one match No match on name.
match of the string. name, but not all

Otherwise all names names match.
in ToT found in

dictionary.
Family Name If a string - an exact | At least one match No match on name.
match of the string. name, but not all

Otherwise all names | names match.
in ToT found in
dictionary.

© 2016-2024 ToT Inc. All rights reserved.

Name Matching

Name matching is complex. People have first (given) names, last (family) names, nicknames,
maiden names, past names and aliases that they choose to use to protect their anonymity when
interacting online. In parts of the world people use maternal and paternal names and in other
parts people hyphenate their names when they get married.

Not all of these uses evoke the same feelings of trust but they are all cases that people use.
Token of Trust attempts to handle all of these cases. To understand more about the full scope of
what is possible with names and Token of Trust please (see Specifying Names).

Handling familyName

"familyName": {
current: "Fernandez",
previous: "Fernandez",
maternal: "Fernandez",
paternal: "Martinez"

Handling givenName

Example Curl Request for /api/reputation

curl -X GET \
"https://app.tokenoftrust.com/api/reputation/YOUR USERID?totSecretKey=secret YO
UR SECRET KEY&totApiKey=public YOUR PUBLIC KEY&appDomain=your.domain.com&scope=
seal-details"

-—-- Response ----

"content": ({
"reasons": {
"isUserBaselineVerified": {
"value": true,
"dependsOn": [
"isOnlineVerified"

© 2016-2024 ToT Inc. All rights reserved.

"isRealWorldVerified": {
"value": false
by
"isUserBaselineVerified": {
"value": true,
"dependsOn": [
"accountDataIsConsistent",
"isOnlineVerified"

by
"accountDataIsConsistent": ({
"value": true,
"dependsOn": [
"familyNameIsConsistent",
"givenNameIsConsistent"

by
"isOnlineVerified": {

"dependsOn": [
"accountDataIsConsistent",
"facebook_totVerifiedAccount",
"paypal_totVerifiedAccount"

1,

"value": "noMatch"

by
"facebook_ totVerifiedAccount": {

"dependsOn": [
"facebook_isLongStanding",
"facebook_accountDataIsConsistent”,
"facebook_hasHighQualityRealWorldLink",
"facebook_hasEnoughConnections"

1,

"value": "noMatch"

}
by

"consistency": {

"baseline": "community",
"compares": {
"fullName": ({
"status": "match",

"considered": {
"online": 2,
"primary": 1

by

"matches": {
"online": 2,

"primary": 1

b

"givenName": {

© 2016-2024 ToT Inc. All rights reserved.

"status": "match",

"considered": {
"online": 2,
"primary": 1

by

"matches": {
"online": 2,

"primary": 1

by
"familyName": {
"status": "match",
"considered": {
"online": 2,
"primary": 1
s
"matches": {
"online": 2,

"primary": 1

by
"considered": {
"online": 2,

"primary": 1

by

"metadata": {
"version": "1.0",
"status": 200

POST /api/connection/{appUserid}

Allows a community to create or update a connection to an end-user and set the metadata
associated with that user.

The metadata is used to determine the match status of the community user with the TOT user
during /users/{appld}/reputation requests. For details on how these attributes are used in
reputation reports see the Matching section above.

The response will include an accessToken is returned which can be used to render the Account
Connector Widget.

© 2016-2024 ToT Inc. All rights reserved.

https://docs.google.com/document/d/1RrA3Dh8Le5PV_hygreYQOVRLIvoxAQZZq0yyCyQwdYQ/edit#heading=h.jeh2yid3bb7
https://tokenoftrust.com/developer/guide/embed/#account
https://tokenoftrust.com/developer/guide/embed/#account

Request Spec

'spec': {
method: ‘POST',
path: '/api/connection/:appUserid’,
description: 'Allow the community to create a connection an end-user.',
produces: ['application/json'],
parameters: [
param.path ('appUserid', 'community ID of user', 'string'),

param.body ('appDomain', 'The domain registered for this api key.',

'string'),
param.body ('totApiKey', 'A valid apiKey.', 'string'),
param.body ('totSecretKey', 'A valid secret Key.', 'string'),
param.body ('appData', 'Community data for user.', 'AppData')]

}

AppData

The appData body has the following fields, but may include others.

appData : {
location: LocationObiject (see below),
givenName: string or map of :’name’, or ‘nickname’ values (see Specifving

Names) ,
familyName: string or map of: ‘maternal’, ‘paternal’, ‘maiden’ values
(see Specifying Names),
middleName: string,
dateOfBirth: {year: YYYY, month: MM, date: DD}, // FUTURE
emailAddress: [/* array of up to 3 addresses */], // FUTURE
phoneNumber: [/* array of up to 3 phone numbers */] // FUTURE

NOTE: We accept but don’t yet match against dateOfBirth, emailAddress and phoneNumber.
These fields should be provided if they're available so that when consistency and reasoning for
these fields are implemented that these values are already available.

LocationObject

location : {
locality: “Bogota”,
region: “Columbia”,
countryCode: “CO”,

w74
14

postalCode:

V74

linel:

© 2016-2024 ToT Inc. All rights reserved.

w74

line2:

Specifying Names

In the simplest case a names are represented as a string this way:

familyName: “Smith”,
givenName: “John”

Unfortunately a significant part of the population cannot describe their name identity quite so
simply. Last names (aka family names) are handled differently throughout the world. Family
names change differently depending upon culture, marriage and even legal name changes.
Beyond this historically people protected themselves using aliases when interacting with
strangers online and this practice is still common. Lastly, many people have nicknames that they
use in particular on social networks and when talking with close friends.

In order for name compares to be useful and not too restrictive Token of Trust has to behave
well when confronted with these variations. To handle these cases we support an object base
name-map to allows the integrator to specify different names for different reasons. When this is
done we are able to match different variations of names without requiring user intervention.

For ‘familyName’ we support these keys:

current - the current last name - this is the assumed key if a the family name is a string. This is
the key used to determine a full match with the user’s family name - matching against other
attributes will result in a partial match and potentially a reason to be careful.

paternal - last name from father’s side.

maternal - last name from mother’s side.

maiden - name prior to marriage

previous - a previous last name

alias - one or more alternate names (can be a string or array of strings).

For ‘givenName’ we support these keys:

current - the current given name - this is the assumed key if a the family name is a string. This
is the key used to determine a full match with the user’s family name - matching against other
attributes will result in a partial match and potentially a reason to be careful.

previous - a previous given hame

nickname - one or more nicknames (can be a string or array of strings).

alias - one or more alternate names (can be a string or array of strings).

© 2016-2024 ToT Inc. All rights reserved.

Paternal/Maternal Matching

In Latin America for example we might expect many people to have 2 family names - one from
the paternal side and one from the maternal side. This should be passed to Token of Trust this
way:
familyName : {
paternal: “Gonzales”,
maternal: “Hernandez”

When Token of Trust compares a name from a social network to a paternal/maternal
familyName the default order of the comparison will be paternal maternal, e.g. in the above
example “Gonzales Hernandez”.

Here’s how Token of Trust would match against incoming names (from Social Networks for
example):

“Gonzales Hernandez” : fullMatch.
“Gonzales” : partialMatch.
“Hernandez” : partialMatch.
“Hernandez Gonzales” : noMatch.

In the event that these names should be considered in opposite order the ‘current’ name should
be specified to override the default ordering of paternal, maternal - like so:

familyName : {
paternal: “Gonzales”,
maternal: “Hernandez”,
current: “Hernandez Gonzales”

With this adjustment here’s how Token of Trust would match against the incoming names from
the previous example:

“Gonzales Hernandez” : noMatch.
“Gonzales” : partialMatch.
“Hernandez” : partialMatch.
“Hernandez Gonzales” : fullMatch.

In short, to get a fullMatch the complete name must be specified in the correct order - otherwise
a partialMatch is returned.

© 2016-2024 ToT Inc. All rights reserved.

Maiden Names

In the United States we typically think of having just one last name but it is very common to
have a maiden name, a previous last name or both. These can be specified this way:

familyName : {
current: “Smith-Johnson”,
previous: “Jameson”,

maiden: “Johnson”

As mentioned - a match against previous or maiden is considered a partial match and the
system may reveal in a public profile that you're using a past or maiden name and raise a
reason to be careful.

Hyphenated Names

Sometimes people choose to take on hyphenated names. This is common practice in the United
States after marriage. These can be specified this way:

familyName : {

current: “Smith-Johnson”

Here’s how Token of Trust would match against incoming names (from Social Networks for
example):

“Smith-Johnson” : fullMatch.
“Smith” : partialMatch.
“Johnson” : partialMatch.
“Johnson-Smith” : noMatch.

If the integrator has knowledge of maiden name it should be specified because in the user’s
Reputation Report it can then be called out as a more credible reason for a less than full match.
In this case that would just be added as follows:

familyName : {
current: “Smith-Johnson”,
maiden: “Johnson”

The matching itself doesn’t change:

“Smith-Johnson” : fullMatch.
“Smith” : partialMatch.

© 2016-2024 ToT Inc. All rights reserved.

“Johnson” : partialMatch.
“Johnson-Smith” : noMatch.

Aliases

In our early user feedback sessions we learned not trusting social networks, institutions and
strangers to be responsible about protecting their data many people use aliases to protect
themselves.

We allow that as follows:

familyName : {
current: “Brown”,
alias: “Braun”

familyName : {
current: “Brown”,
alais: [“Braun”, “Browne”]

Matching against this results in the following:

“Brown” : fullMatch.
“Braun” : partialMatch.

Use of ‘Braun’ in the case above is also likely to result in a reason to be careful. Also note that
‘Browne’ would be a ‘noMatch’ in the first configuration and a ‘partialMatch’ in the second.

Nicknames

In addition to ‘alias’, givenName also allow the ‘nickname’ field which can either be a string or
an array:

givenName : {
current: “Johnathan”,
nickname: “Johnny”
}
- Or-
givenName : {

current: “Johnathan”,
nickname: [“J-Dog”, “Jon”, “Jonny”, “Johnny”]

© 2016-2024 ToT Inc. All rights reserved.

Note that the use of multiple names may result in the appearance of one or more reasons to be
careful. The difference between nickname and alias is only in how we explain the use of them in
reasons to be careful... e.g. ‘this user is using a nickname on Facebook’ vs ‘this user has
chosen not to use their real name on Facebook’... nicknames are generally considered more
trustworthy than aliases but both will be considered partialName matches.

The Use of Aliases and Nicknames

As of this writing we are considering how to balance the use of aliases and nicknames. In both
cases we are considering sharing their values in profiles and APIs to ensure that we strike the
right balance of transparency, flexibility and prevent abuse. For example - we are considering
listing one or more reasons to be careful if people use nicknames or aliases but lifting this
reason if they allow the full set of nicknames and aliases to be shared with the viewer.

Examples of Name Matching and Results

Here are some concrete examples to keep in mind as you think about how name matching
works:

Names compares are case insensitive (Smith === smith).

Names compares ignore special characters. (O'Brien === OBrien).

Names compares ignore diacritics. (Jesus === Jesus).

The "current"” field is always used by default: {current : "Blanco Hernandez"} matches

"Blanco Hernandez"

5. If no "current" field we assume "paternal maternal" : {paternal: "Blanco", maternal:
"Hernandez"} matches "Blanco Hernandez"

6. When we use "paternal maternal" they must be in that order: {paternal: "Blanco",
maternal: "Hernandez"} does NOT match "Hernandez Blanco".

7. If paternal-maternal attributes are out of order specify a "current" : {current: "Hernandez
Blanco", paternal: "Blanco", maternal: "Hernandez"} does match "Hernandez 8. Blanco".

8. "current" always takes precedence over paternal-maternal attributes: {current:
"Hernandez Blanco", paternal: "Blanco", maternal: "Hernandez"} does NOT match
"Blanco Hernandez"

9. If we find only one of paternal or maternal it will partially match: {paternal: "Blanco",
maternal: "Hernandez"} partially matches "Blanco".

10. If we find only one part of a two part "current" name it will partially match: {current :
"Blanco Hernandez"} partially matches "Blanco".

11. If we find only maternal it will partially match: {paternal: "Blanco", maternal: "Hernandez"}
partially matches "Hernandez".

12. If we find only one part of a two part "current" name it will partially match: "Hernandez"

partially matches {current : "Blanco Hernandez"}.

e

© 2016-2024 ToT Inc. All rights reserved.

13. Two part "current" names must always be in order: "Hernandez Blanco" does not match

{current : "Blanco Hernandez"}.

14. > Two part "current" names must be exact matches: "Hernandez Blanco" does not match

{current : "Blanco Hernandez"}.

15. substrings should not partially match (e.g. Smithe !== Smith).

16. Smith-Kline fully matches baseline Smith-Kline
17. Smith partially matches baseline Smith-Kline
18. Kline partially matches baseline Smith-Kline
19. Smith-Kline partially matches baseline Smith.
20. Smith-Kline partially matches baseline Kline.

21. compound Smith-Kline does NOT partially match Smithe-Kline.

22. test Smith-Kline does NOT partially match Kline-Smith.

23. alternate names partially match when exact matches are not present.

Response

If successful the response includes an accessToken is returned which can be used to render the
Account Connector Widget. The following will be returned at minimum in the ‘content’ section of

a successful response:

"accessToken" :"ACCESS TOKEN",
"expires" :"EXPIRATION TIMESTAMP"

Example Curl Request for POST /api/connection

darrin ~/src/tot/tot$ curl -X POST -H "Content-Type:

-d '{
"appData" : {
"givenName": "Darrin",
"location" : {
"locality" : "Minneapolis",
"countryCode": "US"

} A}

application/Jjson" \

"https://app.tokenoftrust.com/api/connection/YOUR USERID?totSecretKey=secret YO
UR SECRET KEY&totApiKey=public YOUR PUBLIC KEY&appDomain=YOUR DOMAIN"

—-——- Response ---

{

© 2016-2024 ToT Inc. All rights reserved.

https://tokenoftrust.com/developer/guide/embed/#account

"content": {

"createTimestamp": 1465067807895,

"expiresTimestamp": 1465235156169,

"updatedTimestamp": 1465148756169,

"accessToken":
"eyJ1lbmNyeXB0ZWQiOnsiZW5jcnlwdGVKkRGFOYSIG6IjFVTU9ZcINTL3UOdGALUTIJIJRW11WW530Ux4S0Z1W1FTa
G50aUtDb29RbW9id3JKTGozNzZhTnBuQzZoajY5WXFhbkgxVUszUGFTUUZGVHpCAFZTSHdIbUpja0d3dWJIT29
NUXNKeWFpYWxQdTdqVzNZN2hnUU4rYUZwb3dIMGO9Hb1FBREYXOW5FbHg4OHVJIY1VRVMI3VEhtOGANN1YvUlhsO
FRqQY3Rpb25Nd0dFNnpwbms3ZThWaUJTYkUORVh1VitLb3hHa2ZzTERVVHFNQ2FRQOM10d1FgMO0O0vUWhtREHNIUEF
jcENaWmdqcXExZkFrWU1lJbmFVQ21wM00rczNUdjRHTDhZZVdFaFgxRDRpalI1lM2ttdFFYbzd1UVIWRUFoL1lAwb
1R30FJORH1kSnRSaVhSMmxobi9Z¥mordGpocVBJcjkvZGZ5WUNzcDQ3ZVZITkYXVT1tZXZIVkFvVTdDNF1iZkR
DRONvVSitpU3dxNnVUOTY30DhJTVgrWmovNO1gLOtPV3AONjZCR29reHdYK2ZgVVcOQVQxXNTROV1B5VOdrbHkvb
kplZWRoZmtmRnZ2a3JQVnBxVzdSNFAWT2d6YUJkbHRZUkNzVOFEW1dvcEFKL11zdFNocVRtWW5Ec09Z0GJ1ZTd
2amNPellISXNkbHFzQmFRSmowTz1Id2RGAXNoIiwicGFzc3dvemRTYWx0IjoicmxNWGcxN1k5RTg5MkFrUUSwR
EczSjVpdytY¥ckl6WE43b3cvam40TC8xYz0iLCJjaXBoZXJJdiI6Inl1HRHNMcFZZeWxaUm5kSmxta09BekE9PSI
sImhtYWMiOiJWb0J4NGVpN3h3RnV1UUg4N1hOTm5UY2Z26dGdsM21yNDFwNXhkZFcrVkNnPSJ9LCJjcmVhdGVkI
JoxNDY1MTQ4NzU2MjQ4LCIThcGlLZXkiOiJwdWIsaWNfdGVzdCladXJtYXRTdXNweUShcF1TRFYiLCJyZWZ1lcnd
lck9yaWdpbiI6éInRlc3QuZmluZGFwbGFjZS54eXoifQ=="

1y

"metadata": {
"version": "1.0",
"status": 200

GET /api/connection/{appUserid}

Allows a community to fetch the user data associated with a connection to an end-user - if one
was previously set with /api/connection.

Request Spec

'spec': {

method: ‘GET’,

path: '/api/connection/:appUserid’,

description: 'Allow the community to get connection information related
to an end-user.',

produces: ['application/json'],

parameters: [

param.path ('appUserid', 'community ID of user', 'string'),

param.body ('appDomain', 'The domain registered for this api key.',
'string'),

param.body ('totApiKey', 'A valid apiKey.', 'string'),

param.body ('totSecretKey', 'A valid secret Key.', 'string')]

© 2016-2024 ToT Inc. All rights reserved.

Response

If successful the response includes an accessToken is returned which can be used to render the
Account Connector Widget. The following will be returned at minimum in the ‘content’ section of
a successful response:

"appDbata":{ /** see AppData **/ 1},
"createTimestamp": 1465067807895,
"expiresTimestamp": 1465312366727,
"updatedTimestamp": 1465225966727,

Example Curl Request for GET /api/connection

curl -X GET -H "Content-Type: application/json"
"https://app.tokenoftrust.com/api/connection/demo-darrin?totSecretKey=secret YO
UR SECRET KEY&totApiKey=public YOUR PUBLIC KEY&appDomain=YOUR DOMAIN"

—-—-— Response ---

"content": {
"createTimestamp": 1465067807895,
"expiresTimestamp": 1465312366727,
"updatedTimestamp": 1465225966727,
"appData": {

"givenName": "Darrin",
"familyName": "Edelman",
"location": {
"countryCode": "US",
"locality": "Minneapolis",
"regionCode": "MN"
}
}
b
"metadata": {
"version": "1.0.1",

"status": 200

© 2016-2024 ToT Inc. All rights reserved.

https://tokenoftrust.com/developer/guide/embed/#account

References
We use YARAS as a basis for our RESTful APIs.

Reasons Descriptions

Below is a description of the most common descriptions as of today. The mathematical formula
for each of these may deviate slightly from these english language descriptions.

isUserBaselineVerified - the user is at least online verified (isOnlineVerified) - when this is true
the verified indicator widget will show up and display that the user is verified and the reputation
summary will show up and display the users status (i.e. online and real world verification status).

isOnlineVerified - is true if we have at least two verified online accounts and when the data
provided to the account via /api/connection is consistent with the information we have on
file. Applicable online accounts include facebook, paypal and googlePlus. Alternatively the user
may have one verified account and real world verification with driver’s license or passport. Note
that if this user is on OFAC terrorist watchlist this value is automatically false.

When false, the Token of Trust profile and the widget’s on the community will appear in their
‘Not Verified’ state. When true Token of Trust widgets will appear. Specifically the verified
indicator widget will show up and display that the user is verified and the reputation summary
will show up and display the user’s status.

isRealWorldVerified - the user has verified a real world driver’s license, passport or other official
identity (e.g. voter ID card in Mexico) and the data provided to the account via
/api/connection is consistent with the information we have on file.. Note that if this user is
on OFAC terrorist watchlist this value is automatically false.

accountDatalsConsistent - when true the community data is consistent with the information
Token of Trust has for this user.

givenNamelsConsistent - when true the community ‘givenName’ is consistent with the
givenName Token of Trust has for this user.

locationlsConsistent - when true the community location is consistent with the location Token of
Trust has for this user. Please note: this considers the primary locations for each social network
not social network ‘activities’.

© 2016-2024 ToT Inc. All rights reserved.

https://github.com/darrin/yaras/blob/master/restful-standards.md#why-do-we-need-this-restful-standard

facebook_totVerifiedAccount - when true the user has shown a credible long standing presence
on facebook. Criteria for this include: 1 or more year of account history, a minimum of 15 friends,
a login to prove ownership within the last year, as well as consistent age, name, gender and
primary location - if these are supplied within the baseline.

googlePlus_totVerifiedAccount - when true the user has shown a credible long standing
presence on googlePlus. Criteria for this include: 1 or more year of account history, a login to

prove ownership within the last year, as well as consistent age, name, gender and primary
location - if these are supplied within the baseline.

paypal_totVerifiedAccount - when true the user has shown a credible long standing presence on
paypal. Criteria for this include: 1 or more year of account history, a login to prove ownership
within the last year, as well as consistent age, name, gender and primary location - if these are
supplied within the baseline.

facebook_

Internal Reference:

https://docs.gooagle.com/document/d/121zR0Qk4mZqJTKVFOCYROnIsm -15UV3UgR36y3Dp3
E/edit#theading=h.fm3x3p4vfutp

© 2016-2024 ToT Inc. All rights reserved.

https://docs.google.com/document/d/12IzR0Qk4mZqJTKVFOCyROnlsm_-15UV3UgR36y3Dp3E/edit#heading=h.fm3x3p4vfutp
https://docs.google.com/document/d/12IzR0Qk4mZqJTKVFOCyROnlsm_-15UV3UgR36y3Dp3E/edit#heading=h.fm3x3p4vfutp

